HDU 3308 LCIS (线段树·单点更新·区间合并)

题意 给你一个数组 有更新值和查询两种操作 对于每次查询 输出对应区间的最长连续递增子序列的长度

基础的线段树区间合并 线段树维护三个值 对应区间的LCIS长度(lcis) 对应区间以左端点为起点的LCIS长度(lle) 对应区间以右端点为终点的LCIS长度(lri) 然后用val存储数组对应位置的值 当val[mid + 1] > val[mid] 的时候就要进行区间合并操作了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <cstdio>
#include <algorithm>
#define lc lp, s, mid
#define rc rp, mid+1, e
#define lp p<<1
#define rp p<<1|1
#define mid ((s+e)>>1)
using namespace std;
const int N = 100005, M = N * 4;
int lcis[M], lle[M], lri[M], val[N];

void pushup(int p, int s, int e)
{
lcis[p] = max(lcis[lp], lcis[rp]);
lle[p] = lle[lp], lri[p] = lri[rp];
if(val[mid + 1] > val[mid]) //合并条件
{
lcis[p] = max(lcis[p], lri[lp] + lle[rp]);
if(lle[lp] == mid + 1 - s) lle[p] += lle[rp];
if(lri[rp] == e - mid) lri[p] += lri[lp];
}
}

void build(int p, int s, int e)
{
if(s == e)
{
lcis[p] = lle[p] = lri[p] = 1;
scanf("%d", &val[s]);
return;
}
build(lc);
build(rc);
pushup(p, s, e);
}

void update(int p, int s, int e, int x, int v)
{
if(s == e)
{
val[s] = v;
return;
}
if(x <= mid) update(lc, x, v);
else if(x > mid) update(rc, x, v);
pushup(p, s, e);
}

int query(int p, int s, int e, int l, int r)
{
if(l <= s && e <= r) return lcis[p];
int ret = 0;
if(val[mid + 1] > val[mid])
ret = min(r, mid + lle[rp]) - max(l, mid + 1 - lri[lp]) + 1;
if(l <= mid) ret = max(ret, query(lc, l, r));
if(r > mid) ret = max(ret, query(rc, l, r));
return ret;
}

int main()
{
int T, n, m, a, b;
char op[5];
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
build(1, 0, n - 1);
while(m--)
{
scanf("%s%d%d", op, &a, &b);
if(op[0] == 'Q')
printf("%d\n", query(1, 0, n - 1, a, b));
else update(1, 0, n - 1, a, b);
}
}
return 0;
}

LCIS

Problem Description

Given n integers.
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
Input

T in the first line, indicating the case number.
Each case starts with two integers n , m(0<n,m<=10 5).
The next line has n integers(0<=val<=10 5).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=10 5)
OR
Q A B(0<=A<=B< n).
Output

For each Q, output the answer.
Sample Input

1 10 10 7 7 3 3 5 9 9 8 1 8 Q 6 6 U 3 4 Q 0 1 Q 0 5 Q 4 7 Q 3 5 Q 0 2 Q 4 6 U 6 10 Q 0 9
Sample Output

1 1 4 2 3 1 2 5